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LONG TERM GOALS

Develop a new and simple scheme to detect short-duration underwater signals. Present methods tend to
be overly complicated and/or too finely tuned to one type of signal. The proposed technique uses a
Bayesian approach with “hyper”-parameters, meaning that the model can adapt itself to a wide range of
possible signals and signal types.

OBJECTIVES

Obtain a new formulation of the GLRT that avoids enumeration and is computationally feasible by
replacing intractable enumeration over possible signal characteristics with an a priori signal
distribution, and by estimating the hyperparameters (of the prior distribution) jointly with other signal
parameters, it is possible to It turns out that this estimation can be done very efficiently and neatly via
the estimation-maximization (EM) algorithm.

This approach relies on a coherent statistical model, and is easily and rationally extended in a number
of different directions, such as using assumptions of energy contiguity in time and frequency. The
objectives are to realize these extensions, and to compare their performance with existing transient
detection algorithms.

APPROACH

Difficulties arise with the GLRT (generalized likelihood ratio test) in situations where one or more of
the unknown signal parameters requires an enumeration that is computationally intractable.  In the
transient signal detection problem the frequency characteristics of the signal are typically unknown, so
even if an aggregate signal bandwidth is assumed, the estimation problem intrinsic to the GLRT
requires an enumeration of all possible sets of signal locations within the monitored band.  In this
project, a prior distribution is imposed over those portions of the signal parameter space that
traditionally require enumeration.  By replacing intractable enumeration over possible signal
characteristics with an a priori signal distribution, and by estimating the hyperparameters (of the prior
distribution) jointly with other signal parameters, it is possible to obtain a new formulation of the
GLRT that avoids enumeration and is computationally feasible. It turns out that this estimation can be
done very efficiently and neatly via the estimation-maximization (EM) algorithm. The GLRT
philosophy is not changed by this approach --  what is different from the original GLRT is the
underlying signal model. The performance of this new approach appears to be competitive with that of
a scheme of emerging acceptance, the “power-law” detector of Nuttall. Further, the approach relies on
a coherent statistical model, and is easily and rationally extended in a number of different directions,
such as using assumptions of energy contiguity in time and frequency.
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This research had its genesis in Nuttall’s modeling of transient signals having “unknown location,
structure, extent, and strength”, as a perturbation in the DFT domain away from the independent and
identically-distributed exponential random variables arising from an assumption of a white and
Gaussian time-domain ambient process. This simple and excellent observation gave rise to a series of
“power-law” detectors, basically using test statistics based on summing the DFT magnitude-squares
raised to powers in the range of 2-3. While we recognize the elegance of such a statistic, the approach
here is to apply the model as faithfully as possible, and to derive the optimal detector. The original
approach can be summarized as follows. Consider that DFT samples are exponentially-distributed with
one of two (unknown) scale parameters; and further, allow the process controlling which of these is
active for each DFT sample to be a Bernoulli process (with unknown parameter). If these (three)
parameters can be estimated accurately – and using the EM approach, they can be – then an optimal
detector can be constructed.

More recent approaches include modeling as more than two families of exponentials, and a
generalization of the Bernoulli process to a hidden-Markov model (HMM). We have further examined
the use of EM as a basis, and have determined that under some circumstances a more-sophisticated
maximization algorithm can offer faster, and sometimes better, convergence. We have also explored
modifications on the model to mitigate the statistical problem of a “point-null” hypothesis.

Finally, we have developed, characterized, and successfully tested a test based on the “mean-value
dispersion” statistic, essentially the ratio between the geometric and arithmetic means of the DFT data.
It turns out that this statistic has an elegant derivation based on the new statistical concept of
“overdispersion” of a one-parameter exponential family. More important, this statistic performs
extremely well in cases that the ambient noise power is unknown – that is, in constant false-alarm rate
(CFAR) operation.

Those most intimately involved with the project include Peter Willett (the PI), Biao Chen (a PhD
student at the University of Connecticut), and Dr. Roy Streit (from NUWC, Newport) who has a
parallel contract from ONR on the same topic. More peripherally, another University of Connecticut
graduate student Zhen Wang is testing these algorithms against a wide class of competitors on time-
domain (rather than directly simulated in the frequency domain) data for an application on another
project; and Thialingam Kirubarajan, a University of Connecticut post-doctoral student, is exploring
competitor algorithms to EM.

WORK COMPLETED

With respect to the basic EM approach, we offer:
The discrete Fourier transform of a block of data containing only white Gaussian noise gives rise to a
uniform set of exponential variates, while an additive short-duration signal has the effect of destroying
this uniformity. One of the best known ways to recognize such a deviation from uniformity is the
power-law detector, particularly if the power is chosen with care to match an assumed transient signal
bandwidth. We have pursued a different approach: a GLRT whose estimation is over a set of
hyperparameters describing the nonuniformity, and whose computation relies on the EM algorithm. In
its original formulation these hyperparameters dealt with an assumed underlying Bernoulli signal/no-
signal model, but we have extended it to incorporate multiple signal levels, CFAR operation, and a
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hidden-Markov signal-contiguity model. We have demonstrated that our approach has performance
comparable to and often exceeding that of the best power-law detector. We have also described a
modified Bayes/GLRT detector which specifies that the total energy of the transient must exceed a
certain level in order to have a non-trivial transient detection. Numerical results show that the new
method does provide some performance improvement given that the threshold is appropriately chosen.

With respect to the mean-value detector, we offer:
We have proposed a statistic for testing homogeneity of a data set which assumes exponential
distribution under the null hypothesis. This is derived as the generalized likelihood ratio test of
“overdispersion” in a doubly-exponentially distributed data set. Some properties of this statistic
revelant to the transient detection task have been summarized, and include its CFAR nature, its
provenance, and both its simulated and analytical (approximate) performance. This latter is in general a
considerable improvement over the CFAR version of the power-law detector.

RESULTS

A manuscript on the basic approach has been submitted to IEEE Transactions on Signal Processing,
and a reasonably favorable review returned; a revised paper has been submitted. In addition to
discussion of the basic model above, extensions to the case of multiple-level transients (i.e. the bin-
occupancy process is not simply binary, but P-ary), to heavy-tailed distributions, and to the
augmentation of the Bernoulli process  to be a hidden Markov model (HMM) to capture bandwidth
contiguity structure, are all dealt with in the manuscript. One interesting outcome here was that the
while the performance of the new approach as tested on “transient” signals simulated directly in the
frequency domain was comparable to that of the (best) power-law detector, when the transients were
simulated in the time-domain (as bursts or tonals of varying kinds) the new approach was much more
effective. Upon further examination it appears that this is due to the tendency of such transient signals
to “split” their energy into two roughly equal populations in the frequency domain, a situation very
favorable to the new approach.

An arguable problem with the model is that it is "point-null";  that is, while the alternative is
composite, the null hypothesis of all-ambient bins has less freedom. The result is to some extent a
favoring of the alternative, leading to the necessity of a relatively high threshold value for given false-
alarm rate performance. As remedy, we have explored modification of the EM procedure to deal with
an inequality constraint on the parameters, specifically that the estimated signal-to-noise ratio (SNR) be
larger than a constraint value. The results, as reported in the Proceedings of the 1998 Conference on
Information Sciences and Systems (CISS), indicate that there is indeed performance improvement, but
that this improvement is not unduly large.

We have also explored the underlying exponential model from a somewhat different point of view.
Specifically, we have applied the relatively new statistical concept  of “overdispersion” to test whether
or not all exponential random variates come from the same population. The result, derived (we hope)
neatly and mathematically, is a detector which uses a logarithmic nonlinearity, the statistic being
alternatively expressible as the ratio of the arithmetic to geometric means of the magnitude-square FFT
data. The resultant test is CFAR, and the performance appears to be impressive. Some results about
this were reported in the Proceedings of the 1998 Conference on Information Sciences  and Systems. A
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more comprehensive journal paper, include much performance analysis, will be submitted to IEEE
Transactions on Signal Processing within a month.

IMPACT/APPLICATIONS

This research is most directly applicable to the passive sonars, and in particular to the automatic
detection of short-duration (transient) signals with deployable arrays of sensors. The eventual goal is to
have a reliable and high-performance system capable of monitoring simultaneously several hundred
array channels (beams) for possible transient  activity. If activity is detected, it is expected that this
information will be passed to a higher-level classification system, and thence if a threat is adjudicated
to a human operator for verification.

TRANSITIONS

No transitions from this theoretical research to the fleet are expected soon.

RELATED PROJECTS

The principal investigator on this project works closely with the Transient Signal Processing group at
NUWC, Newport, and collaborates closely with Stephen Greineder, Tod Luginbuhl, and Paul
Baggenstoss of that section. Between the PI and that group there have been a series of contracts
(recently N66604-96-C-0553 and N66604-97-M-3139) on the detection of transient signals, most
particularly on the use of the Page test with and without a hidden Markov model underlying
assumption. The results above on the mean-value dispersion detector were derived in consultation with
the above personnel, and the latter contract is given joint credit in its publication.
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